Contoh Soal Fungsi Komposisi dan Jawaban

Diposting pada

Contoh Soal Fungsi Komposisi dan Jawaban – Fungsi komposisi adalah penggabungan sebuah operasi dua jenis fungsi f(x) dan g(x) sehingga mampu menghasilkan sebuah fungsi baru.

Soal fungsi komposisi

Operasi fungsi komposisi tersebut biasa dilambangkan dengan “o” kemudian dapat dibaca komposisi ataupun bundaran. Fungsi baru inilah yang dapat terbentuk dari f(x) dan g(x) yaitu:

(f o g)(x) yang artinya g dimasukkan ke f

(g o f)(x) yang artinya f dimasukkan ke g

Fungsi tunggal adalah merupakan fungsi yang bisa dilambangkan dengan huruf “f o g” atau bisa dibaca “f bundaran g”.

Kemudian Fungsi (f o g) (x) = f (g (x)) → fungsi g (x) dikomposisikan sebagai fungsi f (x)

Sedangkan, “g o f” dibaca sebagai fungsi g bundaran f. Jadi, “g o f” adalah fungsi f diselesaikan dulu dari fungsi g.

Sifat yang terdapat pada fungsi komposisi adalah :

Jika f : A → B , g : B → C , h : C → D, maka berlaku :

(f o g)(x)≠(g o f)(x). Tidak berlaku sifat komutatif

[f o (g o h)(x)] = [(f o g ) o h (x)]. bersifat asosiatif

 Jika fungsi identitas I(x), maka berlaku (f o l)(x) = (l o f)(x) = f(x)

1 – 10 Contoh Soal Fungsi Komposisi dan Jawaban

1. Jika f(x) = 2x² + 5x dan g(x) = 1/x maka (fog) (2) adalah …

a. 3

b. 2

c. 1

d. ½

e. 1/3

Jawaban : A

Pertama kita cari fungsi (f o g) (𝑥) dulu

soal komposisi invers no 1

2. Diketahui fungsi 𝑓(𝑥) = 2𝑥 + 1 dan 𝑔(𝑥) = 𝑥² − 3𝑥 + 3. Jika nilai (𝑔 o f) (𝑡) = 7 maka nilai t adalah …

a. 1 atau 2

b. -2/3 atau 1

c. -1 atau 2/3

d. -1 atau 3/2

e. -2 atau -1

Jawaban : D

Pertama kita hitung (𝑔 o f) (𝑥)

soal komposisi fungsi no 2

3. Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah sebagai berikut :

f(x) = 3x + 2

g(x) = 2 − x

Tentukan:

a) (f o g)(x)

b) (g o f)(x)

Pembahasan :

a) (f o g)(x)

“Masukkan g(x) nya ke f(x)” sehingga:

(f o g)(x) = f ( g(x) )

= f (2 − x)

= 3(2 − x) + 2

= 6 − 3x + 2

= − 3x + 8

b) (g o f)(x)

“Masukkan f (x) nya ke g (x)” sehingga:

(g o f)(x) = g ( f (x) )

= g ( 3x + 2)

= 2 − ( 3x + 2)

= 2 − 3x − 2

= − 3x

4. Diketahui 𝑓(𝑥) = 1 𝑥 dan 𝑔(𝑥) = 2𝑥 −1 maka nilai (𝑔‾¹𝑜𝑓‾¹)(𝑥) adalah …

soal komposisi fungsi no 4

Jawaban : B

Ada 2 cara untuk menyelesaikan soal tersebut, yaitu dengan menginvers masing-masing fungsi kemudian di komposisikan, atau menggunakan :

(𝑓𝑜 𝑔)−1(𝑥) = (𝑔‾¹𝑜𝑓‾¹)(𝑥)

soal komposisi fungsi no 4-1

5. Diberikan dua buah fungsi:

f(x) = 3x2 + 4x + 1

g(x) = 6x

Tentukan:

a) (f o g)(x)

b) (f o g)(2)

Pembahasan : 

Diketahui:

f(x) = 3x2 + 4x + 1

g(x) = 6x

a) (f o g)(x)

= 3(6x)2 + 4(6x) + 1

= 108x2 + 24x + 1 

= 18x2 + 24x + 1

b) (f o g)(2)

(f o g)(x) = 108x2 + 24x + 1

(f o g)(2) = 108(2)2 + 24(2) + 1

(f o g)(2) = 432 + 48 + 1 = 481

Simak Juga : Soal Limit Fungsi Aljabar

6. Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ….

A. 4x2 − 12x + 10

B. 4x2 + 12x + 10

C. 4x2 − 12x − 10

D. 4x2 + 12x − 10

E. − 4x2 + 12x + 10

Jawaban : A

Pembahasan : 

f(x) = x2 + 1

g(x) = 2x − 3

(f o g)(x) =…….?

Masukkan g(x) nya ke f(x)

(f o g)(x) =(2x − 3)2 + 1

(f o g)(x) = 4x2 − 12x + 9 + 1

(f o g)(x) = 4x2 − 12x + 10

7. Diketahui fungsi f(x) = 3x − 1 dan g(x) = 2x2 + 3. Nilai dari komposisi fungsi (g o f)(1) =….

A. 7

B. 9

C. 11

D. 14

E. 17

Jawaban : C

Pembahasan : 

Diketahui:

f(x) = 3x − 1 dan g(x) = 2x2 + 3

(g o f)(1) =…….

Masukkan f(x) nya pada g(x) kemudian isi dengan 1

(g o f)(x) = 2(3x − 1)2 + 3

(g o f)(x) = 2(9x2 − 6x + 1) + 3

(g o f)(x) = 18x2 − 12x + 2 + 3

(g o f)(x) = 18x2 − 12x + 5

(g o f)(1) = 18(1)2 − 12(1) + 5 = 11

8. Diberikan rumus komposisi dari dua fungsi :

(g o f)(x) = − 3x

dengan

g(x) = 2 − x

Tentukan rumus fungsi f(x) …

A. 3x + 1

B 3x – 2

C. 3x + ½

D. 3x – 1

E. 3x + 2

Jawaban : E

Pembahasan :

(g o f)(x) = − 3x

(g o f)(x) = g(f(x))

− 3x = 2 − (f(x))

− 3x = 2 − f(x)

f(x) = 2 + 3x

atau

f(x) = 3x + 2

9. Diberikan fungsi-fungsi sebagai berikut:

f(x) = 2 + x

g(x) = x2 − 1

h(x) = 2x

Tentukan rumus dari (h o g o f)(x)… 

A. x2 – 4x + 3

B. x2 – 4x – 3

C. x2 + 4x + 3

D. x2 + 4x – 3

E. x2 + x + 3

Jawaban : C

Pembahasan :

Bisa dengan cara satu-satu dulu, mulai dari g bundaran f

(g o f)(x) = (2 + x)2 − 1

= x2 + 4x + 4 − 1

= x2 + 4x + 3

Masukkan hasilnya ke fungsi h(x) sehingga didapatkan

(h o g o f)(x) = 2(x2 + 4x + 3)

= 2x2 + 8x + 6

10. Diketahui fungsi f(x) = x – 4 dan g(x) = x2 – 3x + 10. Fungsi komposisi (gof)(x) =….

A. x2 – 3x + 14

B. x2 – 3x + 6

C. x2 – 11x + 28

D. x2 -11x + 30

E. x2 -11x + 38

Jawaban : E

Pembahasan :

g (x) = x – 3x + 10

(gof)(x) = (x – 4)2 – 3 (x – 4) + 10

= x2 – 8x + 16 – 3x + 12 + 10

= x2 -11x + 38

11 – 15 Contoh Soal Fungsi Komposisi dan Jawaban

11. Fungsi f : R → R dan g : R → R ditentukan oleh f (x) = 2x + 1 dan g(x) = 3x3 + 5.

Tentukan :

a. (f ◦ g) (x)

b. (f ◦ g) (1)

Jawaban : 

soal komposisi fungsi-11

12. Jika g (x) = 3x – 2 dan (g ◦f) (x) = 3x2 +1, maka tentukan f (x) !

Jawaban : 

(g ◦ f) (x) = 3x2 + 1 g

(f (x)) = 3x2 + 1

3(f (x)) – 2 = 3x2 + 1

3.f (x) = 3x2 + 1

f (x) = x2 + 1

13. Tentukanlah g(x-3), Jika diketahui 

soal komposisi fungsi-13

Jawaban : 

soal komposisi fungsi-13-1

14. Tentukan invers fungsi dari f (x) = x3 +5!

Jawaban : 

soal komposisi fungsi-15

15. Diketahui fungsi f : R → R dengan 

soal komposisi fungsi-15-1

Invers fungsi f adalah ….. 

Jawaban : 

soal komposisi fungsi-16

16. Nilai fungsi invers f(2) dari :

soal komposisi fungsi-16-1

maka hasilnya adalah …

Jawaban : 

soal komposisi fungsi-17

Sudah selesai membaca dan berlatih Soal Fungsi Komposisi ini ? Ayo lihat dulu Soal Matematika lainnya

Gambar Gravatar
Semua manusia itu pintar.. Namun yang membedakannya proses kecepatan belajar. pada suatu saat ada peserta didik yang belajar dalam 1-3 pertemuan. ada juga yang membutuhkan 3 pertemuan lebih untuk dapat memahami materi... Dengan kata lain, Belajar tergantung kondisi dan keadaan seseorang untuk memahami materi. baik itu cuaca, suasana, perasaan dan lingkungan yang mempengaruhi. Maka temukanlah kondisi terbaik dirimu untuk belajar. Jika kamu tidak mengerti materi yang diajarkan gurumu hanya saja kamu belum menemukan kondisi terbaik untuk belajar. Karena tidak ada manusia yang bodoh hanya saja malas atau tidak fokus.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *