Contoh Soal Transformasi Geometri (Translasi, Refleksi, Rotasi, Dilatasi)

Diposting pada

Contoh Soal Transformasi Geometri (Translasi, Refleksi, Rotasi, Dilatasi) dan Pembahasan – Berikut ini rangkuman contoh soal Transformasi Geometri (Translasi, Refleksi, Rotasi, Dilatasi) Pilihan Ganda dan Jawaban beserta Penyelesaiannya untuk Siswa dari berbagai penerbit buku yang berjumlah 20 butir.

Soal Transformasi Geometri

Transformasi geometri adalah salah satu studi matematika berkaitan dengan perubahan suatu bidang geometri yang meliputi posisi, besar dan bentuknya.

Transformasi merupakan suatu pemetaan titik pada suatu bidang ke himpunan titik pada bidang yang sama. Jenis-jenis dari transformasi yang dapat dilakukan antara lain :

  • Translasi (Pergeseran)
  • Refleksi (Pencerminan)
  • Rotasi (Perputaran)
  • Dilatasi (Penskalaan)

Translasi adalah pemindahan atau pergeseran suatu objek sepanjang garis lurus dengan arah dan jarak tertentu

Refleksi adalah transformasi yang memindahkan setiap titi pada bidang dengan sifat pencerminan.

Rotasi adalah transformasi dengan cara memutar objek dengan titik pusat tertentu.

1 – 10 Soal Transformasi Geometri dan Jawaban Beserta Pembahasan

1. Bayangan garis y = 2x + 2 yang dicerminkan terhadap garis y= x adalah. . .

soal transformasi geometri no 1

Jawaban : C

Pembahasan : 

soal transformasi geometri dan jawaban no 1

2. Persamaan bayangan kurva y = x² – 2x – 3 oleh rotasi [0, 180°], kemudian dilanjutkan oleh pencerminan terhadap garis y = -x adalah …. 

A. y = x² – 2x – 3 

B. y = x² – 2x + 3

C. y = x² + 2x + 3

D. x = y² – 2y – 3

E. x = y² + 2y + 3

Jawaban : D

Pembahasan : 

soal transformasi geometri dan jawaban no 2

Rotasi sudut-sudut yang lain dapat dihitung sendiri menggunakan kaidah trigonometri.

pencerminan terhadap garis y = -x

soal transformasi geometri dan jawaban no 2-1

3. Persamaan bayangan dari lingkaran x² +y² +4x – 6y – 3 = 0 oleh transformasi yang berkaitan dengan matriks soal transformasi geometri no 2 adalah…. 

A. x² + y² – 6x – 4y- 3 = 0

B. X² + y² – 6x + 4y- 3 = 0

C. x² + y² + 6x – 4y- 3 = 0

D. x² + y² – 4x + 6y- 3 = 0

E. x² + y² + 4x – 6y+ 3 = 0

Jawaban : A

Pembahasan : 

soal transformasi geometri dan jawaban no 3

4. T1 dan T2 adalah transformasi yang masing-masing bersesuaian dengan soal transformasi geometri no 4Ditentukan T = T1 o T2 , maka transformasi T bersesuaian dengan matriks…

soal transformasi geometri no 4-1

Jawaban : E

Pembahasan : 

soal transformasi geometri dan jawaban no 4

5. Ditentukan matriks transformasi .soal transformasi geometri no 5 Hasil transformasi titik (2,-1) terhadap T1 dilanjutkan T2 adalah…. 

A. (-4,3)

B. (-3,4)

C. (3,4)

D. (4,3)

E. (3,-4)

Jawaban : A

Pembahasan : 

soal transformasi geometri dan jawaban no 5

Baca Juga : 10+ Soal Sistem Persamaan Linear Tiga Variabel (SPLTV) [+Pembahasan]

6. Persamaan bayangan garis y = -6x + 3 karena transformasi oleh matriks soal transformasi geometri no 6  kemudian dilanjutkan dengan matriks soal transformasi geometri no 6-1 adalah…

A. x + 2y + 3 = 0 

B. x + 2y – 3 = 0 

C. 8x – 19y + 3 = 0

D. 13x + 11y + 9 = 0

E. 13x + 11y – 9 = 0

Jawaban : E

Pembahasan : 

soal transformasi geometri dan jawaban no 6

7. Bayangan titik A (4,1) oleh pencerminan terhadap garis x =2 dilanjutkan pencerminan terhadap garis x = 5 adalah titik…. 

A. A” (8,5) 

B. A” (10,1)

C. A” (8,1) 

D. A” (4,5)

E. A” (20,2)

Jawaban : B

Pembahasan : 

soal transformasi geometri dan jawaban no 7

8. T1 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8 dan T2 adalah transformasi yang bersesuaian dengan matriks soal transformasi geometri no 8-1 Bayangan A (m,n) oleh transformasi T1 o T2 adalah (-9,7). Nilai m+n sama dengan…

A. 4

B. 5

C. 6

D. 7

E. 8 

Jawaban : B

Pembahasan : 

soal transformasi geometri dan jawaban no 8

9. Bayangan ∆ABC dengan A(2,1), B(6,1), C(5,3) karena refleksi terhadap sumbu y dilanjutkan rotasi (0,90°) adalah…

A. A” (-1,-2), B” (1,6) dan C” (-3,-5)

B. A” (-1,-2), B” (1,-6) dan C” (-3,-5)

C. A” (1,-2), B” (-1,6) dan C” (-3,5)

D. A” (-1,-2), B” (-1,-6) dan C” (-3,-5)

E. A” (-1,2), B” (-1,-6) dan C” (-3,-5)

Jawaban : D

Pembahasan : 

soal transformasi geometri dan jawaban no 9

10. Persamaan peta kurva y = x² – 3x + 2 karena pencerminan terhadap sumbu x dilanjutkan dilatasai dengan pusat O dan factor skala 3 adalah…

A. 3y + x² – 9x + 18 = 0

B. 3y – x² + 9x – 18 = 0

C. 3y – x² + 9x + 18 = 0

D. 3y + x² + 9x + 18 = 0

E. y + x² + 9x – 18 = 0 

Jawaban : A

Pembahasan : 

pencerminan terhadap sumbu x:

P ( x , y ) → P ‘ ( x , – y )

Dilatasi terhadap titik pusat O(0,0) dengan factor skala 3 :

[O, k] : P(x,y) → P'(kx, ky)

[O,3k] : P(x,y) → P'(3x, 3y)

pencerminan terhadap sumbu x dilanjutkan dilatasai
dengan pusat O dan factor skala 3 :

P(x,y) → P ‘(x, -y) → P ”(3x, -3y)

soal transformasi geometri dan jawaban no 10

11 – 20 Soal Transformasi Geometri dan Jawaban Beserta Pembahasan

11. Luas bayangan persegipanjang PQRS dengan

P(-1,2), Q(3,2), R (3,-1), S(-1,-1)

karena dilatasi [0,3] dilanjutkan rotasi pusat O bersudut π/2 adalah…

A. 36

B. 48

C.72

D. 96

E. 108

Jawaban : E

Pembahasan : 

dilatasi [0,3] :

[O,3k] : P(x,y) → P ‘(3x, 3y)

soal transformasi geometri dan jawaban no 11

Sehingga :

P(x,y) → P” (-3y, 3x)

P(-1,2), Q(3,2), R (3,-1), S(-1,-1)

P(-1,2) → P” (-6,-3)

Q(3,2) → Q” (-6,9)

R (3,-1) → R” (3,9)

S(-1,-1) → S” (3,-3)

Buat sketsa gambarnya:

soal transformasi geometri dan jawaban no 11-1

Sehingga luas transformasinya adalah :

Panjang (p) x lebar (l) = 12 x 9 = 108 satuan luas

12. Segitiga ABC dengan A(2,1), B(6,1), C(6,4) ditransformasikan dengan matriks transformasi soal transformasi geometri no 12 Luas bangun hasil transformasi segitiga ABC adalah….

A. 56 satuan luas 

B. 36 satuan luas

C. 28 satuan luas

D. 24 satuan luas 

E. 18 satuan luas

Jawaban : E

Pembahasan : 

misalkan T = soal transformasi geometri no 12maka

Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC |det T| = |ad –bc| = |3-0| = 3

luas ∆ ABC :

buat sketsa gambar :

soal transformasi geometri dan jawaban no 12

Luas bayangan/transformasi ∆ ABC =|det T| x luas ∆ ABC

= 3 x 6 = 18 satuan luas

13. Tentukan bayangan lingkaran (x-3)2 + (y+1)2 = 4 jika ditranslasikan 

 

a. 5

b. 4

c. 3

d. 2

e. 1

Jawaban : B

Pembahasan : 

Ambil sembarang titik P(a,b) pada lingkaran (x-3)2 + (y+1)2 = 4 sehingga diperoleh (a-3)2 + (b+1)2 = 4

soal transformasi geometri no 13-1

14. ABCD adalah sebuah persegi dengan koordinat titik-titik sudut A(1,1), B(2,1), C(2,2) dan D(1,2). Tentukan peta atau bayangan dari titik-titik sudut persegi itu oleh dilatasi [O,2]!

Jawaban :  

Pembahasan : 

soal transformasi geometri no 14

15. Jika titik A(15,8) dicerminkan terhadap garis x=7, maka bayangan titik A adalah titik A’ dengan koordinat….

Jawaban : 

Pembahasan : 

soal transformasi geometri no 15

Baca Juga : 15+ Soal Sistem Persamaan Linear Dua Variabel (SPLDV) [+Pembahasan]

16. Titik A(a,b) dicerminkan terhadap garis x=2 menghasilkan bayangan titik A’(0,2), maka nilai (a,b) berturut-turut adalah….

a. 2 , 4

b. 4 , 2 

c. 2 , 2

d. 3 , 1

e. 1 , 3

Jawaban : B

Pembahasan : 

soal transformasi geometri no 16

17. Titik A’(-16,24) merupakan bayangan dari titik A(x,y) yang didilatasikan dengan pusat O(0,0) dan faktor skala -4. Koordinat titik A adalah….

Jawaban : 

Pembahasan : 

soal transformasi geometri no 17

18. Tentukan persamaan peta dari garis 3x – 5y + 15 = 0 oleh pencerminan terhadap sumbu x!

Jawaban : 

Pembahasan : 

soal transformasi geometri no 18

19. Tentukan persamaan peta dari garis 3x-5y+15=0 oleh dilatasi terhadap pusat O(0,0) dengan faktor skala 5!

Jawaban : 

Pembahasan : 

soal transformasi geometri no 19

20. Lingkaran x² + y² – 6x + 2y + 1 = 0. Jika ditransformasikan dengan dilatasi [O,4], persamaan bayangannya adalah….

Jawaban : 

Pembahasan : 

soal transformasi geometri no 20

Untuk menambah wawasan siswa, dalam pengerjaan soal transformasi geometri ataupun berhitung dapat download buku gratis melalui link berikut :

Google Drive

Transformasi geometri atau sering disebut geometri adalah mengubah setiap koordinat titik (titik-titik dari suatu bangun) menjadi koordinat lainnya pada bidang dengan suatu aturan tertentu. Misalnya, transformasi T terhadap titik P (x,y) menghasilkan bayangan P’ (x’,y’)

Transformasi geometri
Gambar Gravatar
Assalamualaikum wr.wb. Selamat belajar dan mengerjakan tugas.^^PS : Tidak perlu bermimpi menjadi orang terkenal atau menginsipirasi, cukup menjadi individu yang bermanfaat untuk orang lain, Insha Allah kamu akan menemukan jalanmu.. Karena setiap orang memiliki tanggung jawab, peranan dan beban yang harus dipikul. Oleh sebab itu lakukanlah yang terbaik untuk membuat orang tuamu bangga. Terutama kaum muda yang masih memiliki semangat juang yang tinggi, inilah saatnya kamu bekerja keras dan belajar dengan sungguh-sungguh!

1 komentar.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *